« UC5 : Machine Learning vs DDoS/en » : différence entre les versions

De Wiki Campus Cyber
Aller à :navigation, rechercher
(Page créée avec « UC5 : Machine Learning vs DDoS »)
 
(Page créée avec « == Notebooks du use case == Retrouvez tous les éléments du Use Case sur le GitLab du Campus Cyber :https://gitlab.com/campuscyber/gt-ia-et-cyber/-/tree/main/UC5%20Cyber%20Attack%20Use%20Case%20-%20Machine%20Learning%20Vs%20DDoS?ref_type=heads<nowiki/> »)
 
(18 versions intermédiaires par le même utilisateur non affichées)
Ligne 5 : Ligne 5 :
|Status=Production
|Status=Production
}}
}}
<div lang="fr" dir="ltr" class="mw-content-ltr">
== Overview==
== Overview==
The use case focuses on vast varieties of intrusions and attack activities of the network traffic. We propose three Dataset ready for exploration and modeling.
The use case focuses on vast varieties of intrusions and attack activities of the network traffic. We propose three Dataset ready for exploration and modeling.
</div>


<div lang="fr" dir="ltr" class="mw-content-ltr">
* [CSE-CIC-IDS2018Datasets](https://www.unb.ca/cic/datasets/ids-2018.html#:~:text=In%20CSE-CIC-IDS2018%20dataset%2C%20we%20use%20the%20notion%20of,human%20operators%20to%20generate%20events%20on%20the%20network)
* [CSE-CIC-IDS2018Datasets](https://www.unb.ca/cic/datasets/ids-2018.html#:~:text=In%20CSE-CIC-IDS2018%20dataset%2C%20we%20use%20the%20notion%20of,human%20operators%20to%20generate%20events%20on%20the%20network)
</div>


<div lang="fr" dir="ltr" class="mw-content-ltr">
* [UNSW-NB15Datasets](https://research.unsw.edu.au/projects/unsw-nb15-dataset)
* [UNSW-NB15Datasets](https://research.unsw.edu.au/projects/unsw-nb15-dataset)
</div>


<div lang="fr" dir="ltr" class="mw-content-ltr">
* [USB-IDS Datasets](http://idsdata.ding.unisannio.it/index.html)
* [USB-IDS Datasets](http://idsdata.ding.unisannio.it/index.html)
</div>


<div lang="fr" dir="ltr" class="mw-content-ltr">
For each cyber security dataset we propose data analysis, data standardization an modeling notebooks. In some notebooks standardization step is include in the modeling notebook
For each cyber security dataset we propose data analysis, data standardization an modeling notebooks. In some notebooks standardization step is include in the modeling notebook
</div>


<div lang="fr" dir="ltr" class="mw-content-ltr">
* Authors: Christian Maréchal
* Authors: Christian Maréchal
* Keywords: Supervised Machine Learning, Half-Supervised Machine Learning, Clustering, Data Standardization
* Keywords: Supervised Machine Learning, Half-Supervised Machine Learning, Clustering, Data Standardization
</div>


<div lang="fr" dir="ltr" class="mw-content-ltr">
==Plan of Study==
==Plan of Study==
</div>


<div lang="fr" dir="ltr" class="mw-content-ltr">
* Data Analysis Notebook --\> Standardization Notebook --\> Modeling Notebook
* Data Analysis Notebook --\> Standardization Notebook --\> Modeling Notebook
</div>


<div lang="fr" dir="ltr" class="mw-content-ltr">
To make things easier each notebook can be run independently.
To make things easier each notebook can be run independently.
</div>


<div lang="fr" dir="ltr" class="mw-content-ltr">
== Dataset Cse cic ids ==
== Dataset Cse cic ids ==
</div>


<div lang="fr" dir="ltr" class="mw-content-ltr">
===Data===
===Data===
{| class="wikitable"
{| class="wikitable"
Ligne 61 : Ligne 40 :
|
|
|}
|}
</div>


<div lang="fr" dir="ltr" class="mw-content-ltr">
===Notebooks===
===Notebooks===
{| class="wikitable"
{| class="wikitable"
Ligne 79 : Ligne 56 :
|
|
|}
|}
</div>


<div lang="fr" dir="ltr" class="mw-content-ltr">
== Dataset Unsw ==
== Dataset Unsw ==
</div>


<div lang="fr" dir="ltr" class="mw-content-ltr">
=== Data ===
=== Data ===
{| class="wikitable"
{| class="wikitable"
Ligne 121 : Ligne 94 :
|
|
|}
|}
</div>


<div lang="fr" dir="ltr" class="mw-content-ltr">
=== Notebooks ===
=== Notebooks ===
{| class="wikitable"
{| class="wikitable"
Ligne 195 : Ligne 166 :
|
|
|}
|}
</div>


<div lang="fr" dir="ltr" class="mw-content-ltr">
== Dataset USB IDS ==
== Dataset USB IDS ==
</div>


<div lang="fr" dir="ltr" class="mw-content-ltr">
=== Data ===
=== Data ===
{| class="wikitable"
{| class="wikitable"
Ligne 221 : Ligne 188 :
|
|
|}
|}
</div>


<div lang="fr" dir="ltr" class="mw-content-ltr">
=== Notebooks ===
=== Notebooks ===
{| class="wikitable"
{| class="wikitable"
Ligne 235 : Ligne 200 :
|
|
|}
|}
</div>


<div lang="fr" dir="ltr" class="mw-content-ltr">
== Notebooks du use case ==
== Notebooks du use case ==
Retrouvez tous les éléments du Use Case sur le GitLab du Campus Cyber :https://gitlab.com/campuscyber/gt-ia-et-cyber/-/tree/main/UC5%20Cyber%20Attack%20Use%20Case%20-%20Machine%20Learning%20Vs%20DDoS?ref_type=heads<nowiki/>
Retrouvez tous les éléments du Use Case sur le GitLab du Campus Cyber :https://gitlab.com/campuscyber/gt-ia-et-cyber/-/tree/main/UC5%20Cyber%20Attack%20Use%20Case%20-%20Machine%20Learning%20Vs%20DDoS?ref_type=heads<nowiki/>
</div>
{{PageSubHeader Commun
{{PageSubHeader Commun
|WorkGroup=IA et cybersécurité
|WorkGroup=IA et cybersécurité
}}
}}

Dernière version du 2 janvier 2025 à 14:52

Développement du Use Case pédagogique "Machine Learning vs Attaque DDoS" dans le cadre du GT IA et Cyber

Catégorie : Commun Statut : Production 1 : Idée - 2 : Prototype - 3 : Validation - 4 : Production


Overview

The use case focuses on vast varieties of intrusions and attack activities of the network traffic. We propose three Dataset ready for exploration and modeling.

For each cyber security dataset we propose data analysis, data standardization an modeling notebooks. In some notebooks standardization step is include in the modeling notebook

  • Authors: Christian Maréchal
  • Keywords: Supervised Machine Learning, Half-Supervised Machine Learning, Clustering, Data Standardization

Plan of Study

  • Data Analysis Notebook --\> Standardization Notebook --\> Modeling Notebook

To make things easier each notebook can be run independently.

Dataset Cse cic ids

Data

cleaned_ids2018S_test.cs     
cleaned_ids2018S_train.csv

Notebooks

Notebook Data Science step
Cyber_cse-cic-ids_analysis.ipynb Data exploration
Cyber_cse-cic-ids_model.ipynb   Standardization and Half-Supervised Autoencoder model

Dataset Unsw

Data

NUSW-NB15_features.utf8.csv     
UNSW_NB15S_test.csv   
UNSW_NB15S_train.csv
UNSW-NB15_1.csv
UNSW-NB15_2.csv
UNSW-NB15_3.csv
UNSW-NB15_4.csv

Notebooks

Notebook Data Science step     
Cyber_unsw_analysis.ipynb Data exploration
Cyber_unsw_analysisGmm.ipynb data exploration for GMM clustering
Cyber_unsw_standardization.ipynb data standardization
Cyber_unsw_autoencoder.ipynb   Binary classifier study. Half-Supervised Autoencoder modeling, we tested:
-logistic regression   
-Autoencoder Inria like   
-Autoencoder single layer   
-Autoencoder multi layers   
Cyber_unsw_complete_analysis.ipynb   data exploration
Cyber_unsw_model.ipynb   Data Supervised model, to classify attacks of different kinds, we tested:
-Random Forest Classifier (rfc)
-Support Vector Classification (svm)
-Multi-Layer Perceptron (mlp)
-Artificial Neural Network (ann)
-eXtreme Gradient Boosting (xgb)
-Convolutional Neural Network (cnn)

Dataset USB IDS

Data

USB-IDS-1S-TEST.csv     
USB-IDS-1S-TRAIN.csv   
USB-IDS-1S-VALIDATION.csv

Notebooks

Notebook Data Science step     
Cyber_USB-IDS_analysis.ipynb Data exploration

Notebooks du use case

Retrouvez tous les éléments du Use Case sur le GitLab du Campus Cyber :https://gitlab.com/campuscyber/gt-ia-et-cyber/-/tree/main/UC5%20Cyber%20Attack%20Use%20Case%20-%20Machine%20Learning%20Vs%20DDoS?ref_type=heads

Groupe de travail

IA et cybersécurité