« Translations:UC5 : Machine Learning vs DDoS/15/en » : différence entre les versions

De Wiki Campus Cyber
Aller à :navigation, rechercher
Page créée avec « === Notebooks === {| class="wikitable" |+ !Notebook !Data Science step      ! |- |Cyber_unsw_analysis.ipynb |''Data exploration'' | |- |Cyber_unsw_analysisGmm.ipynb |''data exploration for GMM clustering'' | |- |Cyber_unsw_standardization.ipynb |''data standardization'' | |- |Cyber_unsw_autoencoder.ipynb   |''Binary classifier study. Half-Supervised Autoencoder modeling, we tested:'' | |- | | -logistic regression    | |- | | -Autoencoder Inria like   ... »
 
(Aucune différence)

Dernière version du 2 janvier 2025 à 14:52

Informations concernant le message (contribuer)
Ce message n’est pas documenté. Si vous savez où ou comment il est utilisé, vous pouvez aider les autres traducteurs en créant sa documentation.
Définition du message (UC5 : Machine Learning vs DDoS)
=== Notebooks ===
{| class="wikitable"
|+
!Notebook
!Data Science step     
!
|-
|Cyber_unsw_analysis.ipynb 
|''Data exploration''
|
|-
|Cyber_unsw_analysisGmm.ipynb 
|''data exploration for GMM clustering''
|
|-
|Cyber_unsw_standardization.ipynb 
|''data standardization''
|
|-
|Cyber_unsw_autoencoder.ipynb  
|''Binary classifier study. Half-Supervised Autoencoder modeling, we tested:''
|
|-
|
| -logistic regression   
|
|-
|
| -Autoencoder Inria like   
|
|-
|
| -Autoencoder single layer   
|
|-
|
| -Autoencoder multi layers   
|
|-
|Cyber_unsw_complete_analysis.ipynb  
|''data exploration''
|
|-
|Cyber_unsw_model.ipynb  
|''Data Supervised model, to classify attacks of different kinds, we tested:''
|
|-
|
| -Random Forest Classifier (rfc)
|
|-
|
| -Support Vector Classification (svm)
|
|-
|
| -Multi-Layer Perceptron (mlp)
|
|-
|
| -Artificial Neural Network (ann)
|
|-
|
| -eXtreme Gradient Boosting (xgb)
|
|-
|
| -Convolutional Neural Network (cnn)
|
|}

Notebooks

Notebook Data Science step     
Cyber_unsw_analysis.ipynb Data exploration
Cyber_unsw_analysisGmm.ipynb data exploration for GMM clustering
Cyber_unsw_standardization.ipynb data standardization
Cyber_unsw_autoencoder.ipynb   Binary classifier study. Half-Supervised Autoencoder modeling, we tested:
-logistic regression   
-Autoencoder Inria like   
-Autoencoder single layer   
-Autoencoder multi layers   
Cyber_unsw_complete_analysis.ipynb   data exploration
Cyber_unsw_model.ipynb   Data Supervised model, to classify attacks of different kinds, we tested:
-Random Forest Classifier (rfc)
-Support Vector Classification (svm)
-Multi-Layer Perceptron (mlp)
-Artificial Neural Network (ann)
-eXtreme Gradient Boosting (xgb)
-Convolutional Neural Network (cnn)