« UC5 : Machine Learning vs DDoS » : différence entre les versions

De Wiki Campus Cyber
Aller à :navigation, rechercher
Aucun résumé des modifications
Aucun résumé des modifications
 
(4 versions intermédiaires par le même utilisateur non affichées)
Ligne 1 : Ligne 1 :
{{Commun
{{Commun
|ShortDescription FR=Développement du Use Case pédagogique "Machine Learning vs Attaque DDoS" dans le cadre du GT IA et Cyber
|ShortDescription FR=Développement du Use Case pédagogique "Machine Learning vs Attaque DDoS" dans le cadre du GT IA et Cyber
|ImageStr=MachinelearningVS.png
|Status=Production
|Status=Production
}}
}}
== Overview==
== Overview==
The use case focuses on vast varieties of intrusions and attack activities of the network traffic. We propose three Dataset ready for exploration and modeling.
The use case focuses on vast varieties of intrusions and attack activities of the network traffic. We propose three Dataset ready for exploration and modeling.
Ligne 200 : Ligne 198 :
|
|
|}
|}
| Notebook                        | Data Science step                                      |
|----------------------------------|---------------------------------------------------------|
| Cyber_cse-cic-ids_analysis.ipynb | *Data exploration*                                      |
| Cyber_cse-cic-ids_model.ipynb   | *Standardization and Half-Supervised Autoencoder model* |
| Notebook                            | Data Science step                                                          |
|-------------------------------------|-----------------------------------------------------------------------------|
| Cyber_unsw_analysis.ipynb          | *Data exploration*                                                          |
| Cyber_unsw_analysisGmm.ipynb        | *data exploration for GMM clustering*                                      |
| Cyber_unsw_standardization.ipynb    | *data standardization*                                                      |
| Cyber_unsw_autoencoder.ipynb       | *Binary classifier study. Half-Supervised Autoencoder modeling, we tested:* |
|                                    | \-logistic regression                                                      |
|                                    | \-Autoencoder Inria like                                                    |
|                                    | \-Autoencoder single layer                                                  |
|                                    | \-Autoencoder multi layers                                                  |
| Cyber_unsw_complete_analysis.ipynb  | *data exploration*                                                          |
| Cyber_unsw_model.ipynb             | *Data Supervised model, to classify attacks of different kinds, we tested:* |
|                                    | \-Random Forest Classifier (rfc)                                            |
|                                    | \-Support Vector Classification (svm)                                      |
|                                    | \-Multi-Layer Perceptron (mlp)                                              |
|                                    | \-Artificial Neural Network (ann)                                          |
|                                    | \-eXtreme Gradient Boosting (xgb)                                          |
|                                    | \-Convolutional Neural Network (cnn)                                        |
Dataset USB IDS 
Dataset Unsw
-----
==Data==
| USB-IDS-1S-TEST.csv      |
|---------------------------|
| USB-IDS-1S-TRAIN.csv      |
| USB-IDS-1S-VALIDATION.csv |
==Notebooks==
| Notebook                    | Data Science step  |
|------------------------------|--------------------|
| Cyber_USB-IDS_analysis.ipynb | *Data exploration* |
|                              |                    |


&gt:/translate>
== Notebooks du use case ==
Retrouvez tous les éléments du Use Case sur le GitLab du Campus Cyber :https://gitlab.com/campuscyber/gt-ia-et-cyber/-/tree/main/UC5%20Cyber%20Attack%20Use%20Case%20-%20Machine%20Learning%20Vs%20DDoS?ref_type=heads<nowiki/>
{{PageSubHeader Commun
{{PageSubHeader Commun
|WorkGroup=IA et cybersécurité
|WorkGroup=IA et cybersécurité
}}
}}

Dernière version du 13 novembre 2024 à 10:55

Développement du Use Case pédagogique "Machine Learning vs Attaque DDoS" dans le cadre du GT IA et Cyber

Catégorie : Commun Statut : Production 1 : Idée - 2 : Prototype - 3 : Validation - 4 : Production


Overview[modifier | modifier le wikicode]

The use case focuses on vast varieties of intrusions and attack activities of the network traffic. We propose three Dataset ready for exploration and modeling.

For each cyber security dataset we propose data analysis, data standardization an modeling notebooks. In some notebooks standardization step is include in the modeling notebook

  • Authors: Christian Maréchal
  • Keywords: Supervised Machine Learning, Half-Supervised Machine Learning, Clustering, Data Standardization

Plan of Study[modifier | modifier le wikicode]

  • Data Analysis Notebook --\> Standardization Notebook --\> Modeling Notebook

To make things easier each notebook can be run independently.

Dataset Cse cic ids[modifier | modifier le wikicode]

Data[modifier | modifier le wikicode]

cleaned_ids2018S_test.cs     
cleaned_ids2018S_train.csv

Notebooks[modifier | modifier le wikicode]

Notebook Data Science step
Cyber_cse-cic-ids_analysis.ipynb Data exploration
Cyber_cse-cic-ids_model.ipynb   Standardization and Half-Supervised Autoencoder model

Dataset Unsw[modifier | modifier le wikicode]

Data[modifier | modifier le wikicode]

NUSW-NB15_features.utf8.csv     
UNSW_NB15S_test.csv   
UNSW_NB15S_train.csv
UNSW-NB15_1.csv
UNSW-NB15_2.csv
UNSW-NB15_3.csv
UNSW-NB15_4.csv

Notebooks[modifier | modifier le wikicode]

Notebook Data Science step     
Cyber_unsw_analysis.ipynb Data exploration
Cyber_unsw_analysisGmm.ipynb data exploration for GMM clustering
Cyber_unsw_standardization.ipynb data standardization
Cyber_unsw_autoencoder.ipynb   Binary classifier study. Half-Supervised Autoencoder modeling, we tested:
-logistic regression   
-Autoencoder Inria like   
-Autoencoder single layer   
-Autoencoder multi layers   
Cyber_unsw_complete_analysis.ipynb   data exploration
Cyber_unsw_model.ipynb   Data Supervised model, to classify attacks of different kinds, we tested:
-Random Forest Classifier (rfc)
-Support Vector Classification (svm)
-Multi-Layer Perceptron (mlp)
-Artificial Neural Network (ann)
-eXtreme Gradient Boosting (xgb)
-Convolutional Neural Network (cnn)

Dataset USB IDS[modifier | modifier le wikicode]

Data[modifier | modifier le wikicode]

USB-IDS-1S-TEST.csv     
USB-IDS-1S-TRAIN.csv   
USB-IDS-1S-VALIDATION.csv

Notebooks[modifier | modifier le wikicode]

Notebook Data Science step     
Cyber_USB-IDS_analysis.ipynb Data exploration

Notebooks du use case[modifier | modifier le wikicode]

Retrouvez tous les éléments du Use Case sur le GitLab du Campus Cyber :https://gitlab.com/campuscyber/gt-ia-et-cyber/-/tree/main/UC5%20Cyber%20Attack%20Use%20Case%20-%20Machine%20Learning%20Vs%20DDoS?ref_type=heads

Groupe de travail

IA et cybersécurité